Behavior dynamics based motion planning of mobile robots in uncertain dynamic environments
نویسنده
چکیده
This paper provides a new approach to the dynamic motion planning problems of mobile robots in uncertain dynamic environments based on the behavior dynamics from a control point of view. The fundamental behavior of a mobile robot in motion planning is regarded as a dynamic process of the interaction between the robot and its local environment, and then it is modeled and controlled for the motion-planning purpose. Based on behavior dynamics, the dynamic motion-planning problem of mobile robots is transformed into a control problem of the integrated planning-and-control system. And the dynamic motionplanning problem can be transformed into a conventional optimization problem in the robot’s acceleration space. Realization of the collision-avoidance behavior is shown to be just a control problem of the robot’s acceleration. The proposed method can directly provide the desired acceleration for mobile robots. No restrictions are assumed on the shape and trajectories of obstacles. No local minima are encountered in most cases. Collision avoidance between multiple mobile robots can also be realized. Stability of the whole planning-and-control system can be guaranteed. Our method provides a new insight to the motion-planning problem of mobile robots based on behavior dynamics and from the control point of view. Simulation experiments illustrate our results. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Control of the Behavior Dynamics for Motion Planning of Mobile Robots
A new approach to the motion planning problems of mobile robots in uncertain dynamic environments based on the behavior dynamics is proposed. The fundamental behavior of a mobile robot in motion planning, which is regarded as a dynamic process of the interaction between the robot and its local environment, is modeled and controlled for the motion planning purpose. The behavior dynamics is the l...
متن کاملSelf - protection Method for Flying Robots to Avoid Collision
This paper provides a new approach to solve the motion planning problems of flying robots in uncertain 3D dynamic environments. The robots controlled by this method can adaptively choose the fast way to avoid collision without information about the shapes and trajectories of obstacles. Based on sphere coordinates the new method accomplishes collision avoidance of flying robots without any other...
متن کاملDynamical formation control of wheeled mobile robots based on fuzzy logic
In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملArtificial coordinating field and its application to motion planning of robots in uncertain dynamic environments
Artificial coordinating fields (ACF) are proposed to deal with the motion planning problems of mobile robots in uncertain dynamic environments. An ACF around an obstacle can generate two orthogonal force vectors to a robot: one is called the coordinating force vector which is purposively designed in this paper, and the other is the repulsive force vector which is the same as that in a conventio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 53 شماره
صفحات -
تاریخ انتشار 2005